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Abstract  

Kinetic measurements of gas-solid reactions performed on powders, are usually interpreted according to single-particle 
analysis (SPA) models. The use of SPA functions is not a priori justified, since deviations from that functional dependence 
may occur in the powder, owing to three factors: (i) particle size distributions, (ii) particle shape variations and (iii) time 
distributions for the beginning of the reaction on each one of the particles composing the powder. The effects of these factors 
are quantitatively analysed and their interference in the SPA procedure is estimated. It is concluded that under certain 
circumstances the SPA can yield the correct reaction mechanism and even enables a reasonable estimate of the corresponding 
intrinsic kinetic parameters. This analysis is relevant generally to gas-solid kinetics, with particular emphasis on hydriding 
reactions. 
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1. Introduction 

Numerous kinetic studies on gas-solid reactions in 
general, and more specifically on hydriding-dehydriding 
reactions of powdered metallic samples, have been 
presented in the literature during the last two decades. 
Most of these studies were related to intermetallic 
hydrides systems (for a recent review see [1]), whereas 
a few dealt with binary hydrogen-metal reactions (see 
for example [2]). In any case, when different investi- 
gations performed on some given systems are compared, 
confusing and diverse kinetic results are obtained, cast- 
ing serious doubts on the mechanistic interpretations 
of these studies. For example, comparing different 
results on the well-studied LaNis-hydrogen system, a 
variety of reaction rates, proposed rate laws and related 
mechanisms have been reported [3-11]. Some of these 
discrepancies were attributed to heat  transfer effects 
resulting in non-isothermal conditions [10]. Indeed, such 
effects may lead to erronous kinetic rate laws, as 
demonstrated by Dantzer and Orgaz [12, 13]. However, 
even when controlled heat transfer conditions were 
applied [4,5,7,8], inconsistent results still occurred. 

It has been pointed out [14] that in order to evaluate 
intrinsic kinetic parameters (i.e. the parameters which 
are not dependent either on geometrical factors or on 

reaction time, thus specifying the intrinsic kinetics of 
the given reacting system, under the given pres- 
sure-temperature conditions) in a reliable manner, the 
kinetic measurements should be performed on massive 
samples, with well defined geometrical shapes (e.g. 
plates, cubes, cylinders or spheres). For such samples, 
when reacted under certain experimental conditions 
which lead to the progression of the reaction by a 
"contracting envelope" (or "shrinking core") mor- 
phology, simple exact analytical expressions relate the 
measured overall kinetics (i.e. the total reacted fraction 
a vs. time curves) to the intrinsic kinetic parameters 
of the system. The different choices of these intrinsic 
parameters are summarized in [14] for different possible 
types of kinetics. For example, for a constant (time- 
independent) velocity U of the hydride-metal interface, 
this parameter is appropriate for characterizing the 
reacting system. For a time-dependent velocity, other 
intrinsic kinetic parameters may be chosen. The pres- 
sure-temperature dependence of these kinetic param- 
eters may then point to the microscopic mechanism 
controlling the reaction rate [14-19]. 

For simple geometrical shapes of the reacting samples, 
the relation between the overall reacted fraction a and 
the reaction displacement X(t) (at a given time t) is 
given by [14,20-.22] 
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a(t) = ~ a,Xi(t) (1) 
i = l  

where a i are constants related to the shape and initial 
dimensions of the reacting samples, and X(t) is given 
by 

X(t) = Xo + 'f U(t) dt 
to 

(2) 

with U(t) the velocity of the hydride-metal interface 
(which may be either time dependent, e.g. for some 
diffusion-controlled cases, or constant [14], to being the 
time required to form first a continuous hydride layer 
on the sample surface, and Xo the initial thickness of 
that layer when formed at to (Fig. 1). Hence, for the 
time interval between to and t, Eq. (1) allows for the 
exact evaluation of X(t) vs. t, from the measured values 
of the overall reacted fraction a(t). A plot of X(t) vs. 
t yields then the hydride front velocity U(t) (given by 
the slope of that curve), which as mentioned above is 
the intrinsic kinetic parameter for the case of a constant 
(time-independent) velocity. 

It should be pointed out that for t<to, i.e. before 
a continuous product layer has been formed on the 
sample, no simple expression (such as Eq. (1)) can be 
utilized to relate the overall (measured) reacted fraction 
a(t) and any intrinsic kinetic parameter. Hence the 
quantitative interpretation of the kinetic data in that 
initial range is not possible in most cases, and only 
qualitative trends may be estimated. The reliable ap- 
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Fig. 1. Schematic illustration of  the  development  of a product layer 
on a spherical reacting particle with an initial radius R: (a) nucleation 
on the surface; (b) nuclei  growth and partial overlap; (c) initial 
formation of  a cont inuous product  layer (with an average thickness 
Xo) at time to; (d) fur ther  thickening of the  layer at time t. 

plication of Eq. (1) for the evaluation of the hy- 
dride-metal interface velocity U therefore requires that 
Xo be small compared with the initial dimensions of 
the reacting sample. Such requirement may not always 
be fulfilled, especially for small-size samples (e.g. thin 
foils or fine-particle powders). This point will further 
be discussed later. 

In certain cases, when the size of the sample can 
be specified by a single dimensional parameter R, Eq. 
(1) can be replaced by a relation of the form [14,20-22] 

k 
Fr. g(a) = ~ t (t > t0) (3) 

where Fr.g(a) is a specified function of the reacted 
fraction. The subscript r indicates that the form of that 
function depends on the type of reaction kinetics (e.g. 
kinetics with the constant U, or diffusion-controlled 
kinetics with the time-dependent U(t) etc.) and the 
subscript g that it depends on the geometrical shape 
of the sample (e.g. a cube, sphere or wire), k is a 
constant (e.g., for a time-independent interface velocity, 
k is proportional to U), and n is an integer (1 or 2) 
related to the type of kinetics. 

As for Eq. (1), Eq. (3) is applicable only after the 
completion of a continuous product layer with an initial 
thickness of Xo (Fig. 1), i.e. for t > to. The corresponding 
applicable a range thus depends on the relative mag- 
nitudes of Xo and R. For Xo/R << 1, Eq. (3) is fulfilled 
over a wide range of o~ values whereas, for Xo/R = 1, 
Eq. (3) cannot be applied. 

Let us consider now the utilization of the two above 
relations (i.e. Eqs. (1) and (3) respectively) for the 
analysis of kinetic data. When single well-defined geo- 
metrical samples are used [14-19], the application of 
Eq. (1) is preferred, since the different constants (i.e. 
the ai values) are known (from the given dimensions 
of the samples), and an X(t) vs. t curve may simply be 
calculated from the o~(t) data, without any necessary 
assumptions on the controlling mechanism. This X(t) 
curve then directly points to the type of controlling 
kinetics (i.e. whether U is constant or time dependent). 
Evidently, when the type of kinetics is established, the 
validity of the appropriate relation of the form given 
by Eq. (3) can be checked. On the other hand, when 
powdered samples are used, Eq. (1) cannot be utilized 
any more, since neither the shape nor the size of the 
sample is defined, and no unique ai set can be specified. 
Yet, in an attempt to interpret gas-powder reaction 
kinetics, functions of the form given by Eq. (3) are 
usually fitted to the experimental data, with the approach 
that this functional dependence (originally derived for 
a single well-defined reacting particle) is still valid for 
an ensemble of particles with size distributions as well 
as shape variations. In other words, such dispersed 
powders can be well represented by fictitious ensembles 
of uniformly sized particles with a certain fixed shape 
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(e.g. spheres). Obviously, such an assumption cannot 
a priori be justified, and the above approach has been 
criticized in the literature [23-25], pointing to possible 
erroneous or perhaps indeterminate results concerning 
reaction mechanisms and activation energies, deduced 
by the simplified above procedure. 

In this work, the deviations introduced into the single- 
particle analysis (SPA) by the different factors char- 
acterizing real powders are estimated. These factors 
include (1) particle size distributions, (2) particle shape 
variations and (3) time distributions for the com- 
mencement of the reaction on different particles, com- 
posing the powder. Two SPA models are applied, a 
constant-velocity contracting-envelope model, and a dif- 
fusion-controlled time-dependent-velocity model. The 
above calculations indicate under which powder char- 
acteristics and reaction conditions a reliable distinction 
between the two models may still be possible, utilizing 
a simple SPA procedure. It has been shown [25] that, 
under certain conditions, apparent activation barriers 
can be evaluated, even without knowledge of either 
the controlling mechanism or the powder particle size 
distribution. In these cases it is shown here that an 
evaluation of the proper mechanism is also possible by 
the SPA procedure, without any consideration of size 
or shape distributions. However, this simplified SPA 
procedure is limited to reactions where the time dis- 
tributions for the initiation of reaction on the different 
powder particles are much smaller than the corre- 
sponding reaction half-times tin, and where a con- 
tracting-envelope morphology is attained for very small 
a values (i.e. when Xo is much smaller than the particles 
size). 

In contrast with the above contracting-envelope mor- 
phology,, where all the product forms a defined film 
(developing from the outer surface into the bulk), the 
extreme opposite case is that of random nucleation 
and growth in the bulk, where the product is dispersed 
evenly within the reacting particle. In this case, the 
kinetic equations should evidently be independent of 
the sample's geometrical shape or size. The evaluation 
of such analytical kinetic functions is not as simple as 
for the contracting-envelope cases, and only approximate 
relations can be obtained [26-28]. The most utilized 
functions of this type are the Avrami-Erofeyev functions, 
given in Section 2. In order to complete the kinetic 
analysis of powders, this case is also included. 

It should be emphasized that self-heating problems, 
encountered in many kinetic experiments performed 
on powders, are not considered here and isothermal 
conditions are assumed. It is evident that the inter- 
ference of self-heating effects will modify the measured 
kinetics in such a complex way that no meaningful 
analysis can then be made. 

The following analysis is pertinent in general to a 
variety of gas-solid reactions; however, specified ex- 
amples on hydride systems are demonstrated. 

2. Calculation procedures 

2.1. Single-particle analysis 

Before discussing powder analysis, some reminder of 
SPA may be helpful. As mentioned in Section 1 for 
a contracting-envelope progression, functions of the 
form given either by Eq. (1) or alternatively by Eq. 
(3) relate the reacted fraction a to the reaction time 
t. A summary of these functions is given in the literature 
[14,20-22]. Since the common approach to powder 
analysis assumes the powders to consist of spherical 
particles, we shall specify now Eqs. (1) and (3) for this 
geometry only. The kinetic classes are then analysed 
for the contracting-envelope cases, and a third class 
(the Avrami-Erofeyev type) for the random nucleation 
and growth in the bulk. 

For the contracting-envelope progression, one pos- 
sible case is of a constant interface velocity U (henceforth 
denoted by the subscript CV) where the kinetic functions 
are given either by 

trey(t) = 1 -  1 - ~ t 3U 3U 2 t3 = T t -  - t2+ (4) 

or, by rearranging Eq. (4) 

Fcv(a )=l - [1 -a ( t ) ]  1/3= -R t O<t< (5) 

For small a values, i.e. ~<<1, 

1 U 
Fcv(a<< 1)= 5 a(t)= -~ t (5') 

which represents the linear term in Eq. (4). 
The other possible type of kinetics for the contracting- 

envelope case is that of a decelerating velocity, con- 
trolled by the diffusion of gas atoms through the thick- 
ening product layer (henceforth denoted by the subscript 
D). The kinetic function is then given by the 
Carter-Valensi expression [29,30] 

e -  [1 + ( e -  1)a(t)] 2/3 - ( e -  1)[1 - a(t)] 2/a 
FD(a) = •-- 1 

kD 
= 2 ~ - 5 t  

0~<t~< 2(•z3+e~/3 + 1) ~ (6) 

where • is the product-to-reactant-volume ratio and kD 
a diffusion-related constant, chosen as the intrinsic 
kinetic parameter for this case. For hydrogen-metal 
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react ions,  k D is given by [14] 

kD(P, 73- 1 Zo(P, y(T) T) D(73 (7) 
E 

where P is the hydrogen working pressure, T (K) the 
reaction (absolute) temperature, y(T) the hydride com- 
position limit (at 73, Zo(P, 73 the equilibrium excess 
hydrogen composition (i.e. that hydrogen which dissolves 
in the hydride at the given P-T) and D(T) the diffusivity 
of hydrogen in the hydride. 

It is worthwhile to mention that in some studies [21] 
the so-called Jander equation is utilized to represent 
the above decelerating (diffusion-controlled) kinetics. 
This Jander function, however, is based on the incorrect 
assumption that the radius of the spherical shrinking 
core obeys a square-root time dependence, similar to 
the diffusion-controlled planar case. Hence, 

Fo(a) = [Fcv(a)] z = kt (8) 

with Fcv(a) - given by Eq. (5) and k - a diffusion- 
related constant. Evidently, the utilization of planar 
kinetics to the spherical geometry is not justified, and 
the proper diffusion equation should be solved, leading 
to the above Carter-Valensi relation (Eq. (6)). 

It is possible, however, to simplify Eq. (6), for cases 
where e ~  1 (i.e. where the volume change associated 
with the product formation is not large). In these cases, 
( e -  1)a(t) << 1, a series expansion of [1 + ( e -  1)a(t)] 2/3 
reduces Eq. (6) to 

2 FD(O 0 ~ 1 -- ~ a(t)- [1 - a(t)] 2/3 2kD = R2 t 

The latter simplified form will be utilized henceforth 
for the analysis of the decelerating-velocity diffusion- 
controlled kinetics. It is interesting to point out that, 
for a<< 1, expanding FD(a) in Eq. (9) to a Taylor series 
and taking terms up to quadratic yield 

1 2k D 
F D ( a < < I ) =  ~ a2(t) = " - ~  t (9') 

which displays the square-root-of-time a dependence 
typical of planar geometry [14] but with a different 
slope, as discussed further in Section 2.2.2. 

The alternative form of Eq. (9), corresponding to 
the aD(t) VS. t kinetic curves, can be derived by sub- 
stituting into Eq. (9): 

~t) = [1 - a(t)] a/3 (10) 

Eq. (9) then assumes the form 

( 3kDt~R 2 / ~:3- 1.5¢ + 0 .5-  , = 0  (11) 

Solution of the cubic Eq. (11) yielding the physically 
meaningful root ~o(t) (0-<< G0 ~< 1) is then calculated (for 
any given t) and substituted into Eq. (10), leading to 

aD(t) = 1 -- g(t) (12a) 

with 

~o(t) =O.5 + cos[ O(t) + ~ Tr] (12b) 

1 -1/12kD t - - 1 ) ( 0  ~--~D) (12C) 0(t)= gcos ~--R- Y- ~<t~< 

Finally, for random bulk nucleation and growth 
(henceforth denoted by the subscript NG), the most 
utilized approximation is the Avrami-Erofeyev type of 
function given by [26-28] 

aNC(t) = 1 -- exp(--kN~t n) (n >1 2) (13) 

kNG =ggNo  Un 

or alternatively by 

FNG(a ) = { -- ln[1 - a(t)]} TM = kNGlmt (14) 

where Kg is a constant which is dependent on the 
geometrical shape of the growing nuclei (e.g. ~zr for 
spheres, and 8 for cubes) but is independent of the 
reacting sample geometry, No is the number of available 
nucleation sites per unit volume of the sample, n is 
an integer number (related to the dimensionality of 
the growth process) and U is the growth velocity of a 
growing nuclei. 

In the following discussion, it is convenient to utilize 
a reduced time scale ~- defined by 

t 
~'= - -  (15 )  

tl/2 

1 with tl/2 the time required to reach a--~. It is evident 
that any kinetic function which may be expressed in 
the form of 

Fr(a) =k't (16) 

(with r denoting the specific functional form related 
to the corresponding type of kinetics, e.g. Eq. (5), or 
Eqs. (6) and (9) or Eq. (14), and k' some rate constant) 
can also be expressed as 

Fr(o~ ) = Fr(0.5)7 (17) 

with Fr(0.5) a given number obtained by substituting 
a =  0.5 into Fr(a). Hence, for each of the above-men- 
tioned types of kinetics, a plot of Fr(a) vs. ~" should 
give a straight line with a fixed "universal" slope related 
only to the corresponding type of kinetics (i.e. inde- 
pendent of the reaction intrinsic kinetic parameters 
and the sample's size). These "universal" slopes are 
summarized in Table 1. Also are summarized the ap- 
propriate reduced time ranges corresponding to 
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Table 1 
Summary of the characteristics of the different functional forms utilized for gas--solid kinetics (spherical geometry) 

163 

Type of kinetics Functional time Slope of 
(r) dependence reduced time 

(F~(a) vs. t) representation 
(Eq. (17)) 

Reduced 
time 
range a 

Contracting envelope 
with a constant 
interface velocity 
(r --- CV) 

Contracting envelope 
with a decelerating 
velocity, controlled 
by diffusion through 
an adherent 
thickening product 
layer 
(r=-D) 

Eq. (5) 0.21 

Eq. (6) 0.37E 0.63(e+ 1) 2/3 0.63 + - -  
(Carter-Valensi) • -  1 • -  1 • -  1 

or 0.037 
simplified form 
(for E--, 1) 
Eq. (9) 

Random Oulk Eq. (14) 
nucleation and (Avrami-Erofeyev) 
growth n = 2 0.833 
(r-= NG) n = 3 0.885 

n = 4 0.921 

0 ~ T ~ 4 . 8  
0 ~ r ~ * ~ 3 . 8  

0 ~ r D ~ 9  
0 ~ z D * ~ 8  

0~TNG ~ 
0 ~ C * ~ 2 . 6  
0~NG*~I.9 
0 ~ G * ~ l . 6  

"~-~ denotes the range corresponding to 0~< a~< 1 whereas ~'~* denotes the range corresponding to 0~< ct~<0.99. 

0 < a~< t, which are given by 

Fr(1) 
0 )7 (0.5) (18) 

For the bulk nucleation-and-growth kinetics, even 
though a ~ 1 corresponds to ~'NG ~ ~ ,  practically it is 
sufficient to carry out the calculations within the range 
where (~ ~< a~<0.99, which corresponds to the reduced 
time range below about 2-2.6 (depending on the value 
of  n). In fact, the latter 0 ~< a ~< 0.99 reduced time ranges 
(denoted as zr* in Table 1) related to the nucleation- 
and-growth kinetics are shorter than those of the con- 
tracting-envelope kinetics. These time ranges {rr*} follow 
the order 

(19) 

It is worthwhile to point to a qualitative feature which 
enables a simple distinction between the two groups 
of kinetics, namely the contracting-envelope kinetic 
functions and the bulk nucleation growth functions. 
Whereas the types of contracting-envelope kinetics (i.e. 
Eqs. (4) and (12)) display a vs. t curves with gradually 
decreasing slopes, the bulk nucleation and growth func- 
tions (Eq. (13)) display an S-shape with an inflection 
point (i.e. a maximum slope), which corresponds to the 
reduced time (z,,): 

n-1 ~a/. 
"I'm(n) = ~ ]  (n >/2) (20) 

For n = 2, 3 and 4, the corresponding ~-~ are 0.85, 0.99 
and 1.02 respectively. Hence, regardless of  the value 
of the nucleation-and-growth rate constant kNc, the 
inflection points in the aNG(t) functions are located at 
about tin (i.e. displayed at reaction times close to that 
required to reach a=~). Thus a qualitative quick dis- 
tinction between the above two groups of  kinetics is 
possible by just observing the shape of the experimental 
a vs. t curves. It may be argued that the occurrerice 
of initial induction periods as well as initial surface 
nucleation-and-growth processes (preceding the for- 
mation of a continuous product film) may practically 
result in some turning points also in the a vs. t curves 
related to the contracting-envelope kinetics (i.e. as 
mentioned in section 1 the fit of Eqs. (5), (6) or (9) 
may start not at t = 0  but after a certain to). These 
turning points, however, differ from the inherent turning 
points in the nucleation-and-growth functions by (i) 
occurring at low a (and t) values, far below the a = 0.5 
(t=tl/z) values typical of the nucleation and growth 
processes, (ii) being much sharper, resembling a break 
point rather than inflection and (iii) depending on the 
size (and shape) of the reacting samples. In fact, the 
latter difference is valid not only for the turning-point 
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values but also for the whole a(t) vs. t curves, which 
for the contracting-envelope cases depend on the size 
and shape of the reacting samples (reacted under given 
experimental conditions), whereas for the nucleation- 
and-growth cases do not depend on size and shape 
factors. 

It will be pointed out later on (Section 3) that there 
may occur some special cases where the a(t) vs. t curves 
obtained for well-defined (single-particle) samples do 
not depend on the size and shape of the reacting 
samples and yet obey contracting-envelope type of 
kinetics (and not nucleation-and-growth kinetics). 

2.2. Powder analysis 

In the following calculations the effects of three 
parameters which assume a single defined value in the 
SPA cases, but some spread values (i.e. some distribution 
functions) in powders, are evaluated. These parameters 
are (i) size, (ii) geometrical shape and (iii) initial reaction 
time. Evidently, each one of these parameters may vary 
for the different particles composing the powder. An 
analysis is thus made in order to estimate the influence 
of such variations on the SPA functions discussed before. 
The main questions addressed to these cases are the 
following. 

(1) Can the overall kinetics (i.e. the a(t) vs. t curves) 
still be represented by the corresponding SPA-like 
functions (e.g. Eqs. (5) and (9))? 

(2) If these SPA functions are still applicable, what 
are the corresponding slopes of these lines? 

In the following analysis we shall utilize only the 
contacting-envelope cases (Eqs. (5) and (9)), since the 
nucleation-and-growth kinetics are inherently indepen- 
dent of the size and shape parameters. 

2.2.1. Effects of  size distributions 
Assume a powder composed of spherical particles 

having a given size distribution D(R). Assume further 
that all particles start to react at the same time, t=0.  
Each reacting particle i satisfies a given contracting- 
envelope type of kinetics r, e.g. as given by Eq. (4) 
(r = CV) or by Eq. (12) (r = D). Thus, for the ith powder's 
particle, 

o~(t) = a~(R~, t) (21) 

with ar(Ri, t) given by the above contracting-envelope 
equations. The reacted volume of the ith particle is 
given by 

4 4 
vi(t) = -~ ~rRiaai(t) = -~ "n'Ri3 ar(Ri, t) (22) 

and the number of particles with the size ranging 
between Ri and Ri+dR are 

dNi=D(R,) dR (23) 

Hence, the total reacted volume at time t, integrated 
over all powder particles, is given by 

4 f Vr(t) = ~ ~r D(R)R3a~(R, t) dR (24) 
Rmin 

with Rml n the size of the smallest particle, D(R) a given 
size distribution function, and a~(R, t) given either by 
Eq. (4) (r-=CV) or Eq. (12) ( r - D ) .  The initial volume 
Vo of the powder is given by 

Vo = -~ ~r D(R)R 3 dR (25) 
Rmin 

or alternatively 

W 
Vo - (26)  

P 

with W the powder's weight and p the theoretical density 
of the powder's material. 

The calculated total reacted fraction a~calc(t) (at time 
t) of the whole powder is 

o~catc(t) = Vr(t) (27) 
Vo 

Substituting different distribution functions D(R) into 
Eq. (24), and utilizing Eq. (27), the calculated ar¢"~(t) 
vs. t kinetic curves are obtained for any given type of 
kinetics ( r - C V  or D). 

The corresponding Fr(a ~a1¢) vs. t curves may then be 
evaluated and compared with the functional SPA forms 
given in Eqs. (5) and (9) respectively. The calculations 
of the integral in Eq. (24) are performed using the 
trapezoidal method [31]. In the integration procedure, 
care must be taken to eliminate those particles that 
have already reacted completely at time t (i.e. a,(t) = 1), 
from further being counted at higher t values. This is 
done by dividing the integral into 

4 
Rr t) 

Vr( t )  = 5 D ( R ) R  3 dR 

Rmm 

+ ~ fD(R)R3ar (R , t )dR)  (28a) 
Rr'(t) 

with Rr'(t) given by 

Rcv' (t) = Ut (28b) 

go '  (t) = (6kDt) '/2 (28C) 

As mentioned in Section 2.1, it is convenient to 
present the kinetic curves F,(a) on a reduced time 
scale ~', which for the SPA cases yield for each of the 
kinetic classes a "universal" slope, related to that class 
(see Table 1). Such a presentation is thus utilized also 
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for the different Fr(a~a~c) plotted vs. ~- (with tlr 2 cor- 
responding to a calc = 0.5). In these calculations a variety 
of possible distribution functions were applied including 
symmetric (gaussian) functions, and also asymmetric 
(log-normal) functions. Table 2 summarizes these ap- 
plied distributions, which are also shown in Fig. 2. In 
all cases, Rmi n w a s  set to 1 /zm. 

The results obtained for the constant-velocity case 
are presented in Fig. 3 (acv vs. z) and Fig. 4 (Fcv(a) 
vs. -r), while the corresponding results obtained for the 
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Table 2 
Types of distribution functions used in the calculations, and their labelling in the figures 

I I 

O.OOE+O0 2 50E+O0 5,00E+O0 

(b) 

Fig. 3. Effects of size distributions on constant-velocity kinetics of 
a sphere as shown by calculated reacted fraction t~v  vs. reduced 
time ,7- curves, for different size distributions (Fig. 2 and Table 2): 
(a) gaussian distributions; (b) log-normal distributions. The full broad 
line represents the SPA results. 

decelerating velocity diffusion-controlled case are pre- 
sented in Fig. 5 (aD VS. ~') and Fig. 6 (FD(a) vS. ~-). It 
is seen from these figures that the occurrence of a size 
dispersion leads to some deviations from the linear 
Fr(a) vs. ~" relations. However, these deviations are 
displayed mainly in the higher a region, whereas a 
significant region in the lower a range (i.e. up to about 
a=0 .5-0 .6)  displays the linear SPA-like dependence. 
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Fig. 4. Effects of size distributions on constant-velocity kinetics of 
a sphere as shown by calculated reacted fraction function Fcv(a)  
vs. reduced time ~" curves for the different size distributions (a(~-) 
as obtained in Fig. 3): (a) gaussian distributions; (b) log-normal 
distributions (the same as in Fig. 3). The full line represents the 
SPA result. 

Also, the values of the slopes of these linear portions 
are close to the "universal" SPA values (as listed in 
Table 1). 

Besides those "universal" (i.e. kinetics-type-related) 
slopes of the Fr(a) vs. ~" curves, one can refer also to 
the system-related slopes of the Fr(a) vs. t curves (i.e. 
Eqs. (5) and (9)) which depend on the intrinsic kinetic 
parameters of the reacting sample (i.e. U or kD re- 
spectively) as well as on the size parameter R. 

The following questions may then be addressed: is 
it justified to replace the single-valued parameter R, 
appearing in the SPA expressions (Eqs. (5) and (9)), 
by some average (R) of the powder? Furthermore, it 
is known that the conventional average (R) is not always 
the proper quantity to represent integral parameters 
related to the powder. For example, the material volume 
and related theoretical density (Eqs. (25) and (26) 
respectively) are expressed by ( R  3) rather than by (R) 3. 
We may then utilize the more generalized form for 
the average moment of order n: 

( R . )  = D(R)R" dR 
rain 

(29) 
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(b) ,~ 

Fig. 5. Effects of size distributions on diffusion-controlled kinetics 
as shown by aD VS. ~" curves for (a) Gaussian and (b) log-normal 
distributions (Fig. 2 and Table 2). 

with n = 1, 2, 3,... (i.e. n = 1 corresponds to the con- 
ventional average) and check the validity of these (R,) 
substitutions into the SPA expressions. In these cal- 
culations, some arbitrary value of either U (in Eq. (5)) 
or kD (in Eq. (9)) were chosen. The corresponding 
(R,) (n = 1, 2 . . . .  ) values are evaluated, for any given 
size distribution (utilizing Eq. (29)), and the corre- 
sponding SPA-like slopes are then obtained (i.e. U~ 
(R,) for constant-velocity kinetics and 2kD/(R~) z for 
diffusion-controlled kinetics). These slopes are com- 
pared with the respective initial slopes in the linear 
region of Fr(of "~c) vs. t curves (a ca~c evaluated by Eq. 
(27)). The ratios of the SPA-like slopes (for the given 
(R,))  to the calculated OFr(a~a~c)/ot slopes are sum- 
marized in Table 3. It should be pointed out that, even 
though the specific choice of a given intrinsic kinetic 
parameter (i.e. U or ko) affects the absolute values of 
the corresponding slopes, the above-mentioned slope 
ratios are insensitive to that choice, yielding similar 
results. It turns out from Table 3 that, for a given 
intrinsic kinetic parameter, utilization of the average 
moments of the order of about 5-6 best fits the initial 
linear slopes obtained from the Fr(a) vs. t curves. For 
example, utilizing (Rs), the maximum deviation of the 
SPA-like slope from the "real" slope is about 30%, 
with most of the deviations ranging within +20%. 
Hence, performing the kinetic analysis of a given powder, 
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Fig. 6. Effects of size distributions on diffusion-controlled kinetics 
as shown by FD(a) vs. ~" curves for (a) Gaussian and (b) log-normal 
distributions (with OtD(~') as obtained in Fig. 5). 

Table 3 
Typical ratios of SPA-like slopes (i.e. U/(R,) and 2kD/(R,) 2 as 
appearing in Eqs. (5) and (9) respectively, for the different mech- 
anisms) to the corresponding OF,(a¢a)¢)/Ot initial linear slopes, for any 
given particles size distribution, the (R,)  values in the SPA-like 
slopes we.re calculated (according to Eq. (29)), with n = 1-8 

Type of Distribution 
kinetics function 

0 (R) 

Ratio of SPA-like slopes to the calculated 
OFr(aca~c)/~t slopes, using the different 
moments,  (R~) with the following n values 

1 2 3 4 5 6 7 8 

r ~ C V  

r~D 

G1 1.23 1.16 1.11 1.07 1.04 1.00 0.98 0.95 
G2 2.02 1.56 1.35 1.22 1.12 1.05 1.00 0.95 
L1 1.40 1.29 1.19 1.10 1.02 0.95 0.88 0.82 
L2 4.10 2.33 1.54 1.15 0.93 0.79 0.70 0.64 

G1 1.53 1.36 1.25 1.16 1.08 1.02 0.97 0.92 
G2 4.12 2.45 1.84 1.50 1.28 1.12 1.00 0.90 
L1 1.96 1.67 1.43 1.22 1.05 0.91 0.79 0.69 
L2 16.1 5.26 2.29 1.27 0.83 0.61 0.48 0.40 

i.e. fitting a linear Fr(a) vs. t dependence, which yields 
the corresponding initial linear slope OFr(oO/~t, enables 
not only the identification of the controlling mechanism 
(i.e. r - -CV or D) but also the reasonable estimation 
of the corresponding intrinsic kinetic parameters (i.e. 
U in Eq. (5) or kD in Eq. (9)), which are approximated 
by 

0Fcv( ) I 
u =  (Re) ----if--l, 

</I/'2 

1 0FD(a) kD = ~ (Rs) 2 ~ ,<,,,~ 

(30) 

(31) 

with (Rs) calculated from the known size distribution 
of the powder utilizing Eq. (29). 

Z2.Z Effects of shape variations 
It is clear that the assumption of perfect spherical 

particles composing the powder is a crude simplified 
description for most powders. It is therefore necessary 
to have some estimation of the effects of shape variations 
on the kinetic analysis presented before. Like the 
questions addressed in the size distributions analysis, 
two categories of effects should be evaluated, namely 
effects on the "universal" mechanistic-related curves 
(i.e. plotted on a reduced time scale z, (Eq. (15))), 
and effects on the system-related curves (involving slopes 
related to the intrinsic kinetic parameters) plotted on 
a regular time scale c 

In order to estimate the former effect, the SPA 
expressions for different geometrical shapes can be 
used. Choosing two shapes which significantly differ 
from a sphere, namely a wire (radius R; length L; 
L>>R) and a disk (radius R; height H; R>>H), the 
following kinetic functions for the constant-velocity 
progression can be applied: for a disk, 

2U 
Fcv, d(a) = a = ~ -  t (32) 

and, for a wire, 

U 
Fcv. w(c~) = 1 - (1 - a) '/z= -~ t (33) 

with the subscripts d and w denoting the respective 
geometries. 

For a reduced time scale (Eqs. (15) and (17)) the 
above expressions assume the "universal forms" 

Fcv, d(a) = a =  Fcv. d(0.5)r = 0.50r (34) 

Fcv, w(a) = 1 - (1 - a) 1/2 = Fcv. w(0.5)r = 0.29z (35) 

whereas, for spherical geometry, Fcv, s(a) is given by 
Eq. (5) and its "universal" slope on the reduced time 
scale is 0.21 (Table 1). Now consider the case of a 
wire, reacting according to Eqs. (33) and (35) and 
yielding a certain experimental aweXp(t) kinetics. How- 
ever, assume that these results are inadvertently ana- 
lyzed according to the spherical expression Fcv, s(a), 
utilizing the reduced time presentation. According to 
Eq. (35), the "experimental" ~- dependence is 

exp a~ (r) = 1 -  (1-0.29r)  z (36) 
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If this expression, however, is "mistakenly" substituted 
into the spherical case, i.e. 

Fcv, s(aw exp) = 1 - (1 - ~wexp) 1/3 (37) 

the resulting Fcv, ~ (aw exp) vs. r curve is illustrated in 
Fig. 7. It is seen that the linear dependence is still 
maintained over most of the a,~ exp range. The linear 
slope can be calculated from 

0Fcv. s(aw e'p) 0Fcv, s(~w exp) 0aw exp 
= ( 3 8 )  

0r Oa -~p 0r 

which, by utilizing Eq. (37) and Eq. (36), yields 

0Fcv, ,(aw exp) 2 × 0.29 
= - - .  (1-0.29r)  - m  (39) 

0r 3 

For r<  1, the initial slope is then approximately 0.19, 
which is close to the value of 0.21 obtained for the 
"real" spherical case. 

A similar analysis can be done for the disk (Eq. 
(34)). Here, substituting the "experimental" ad e~p into 
the spherical expression 

Fcv, s(O~d exp) = 1 - (1 - 0 . 5 r )  ' / 3  (40) 

yields a curve which again, up to about ~'=1 (i.e. 
ad ~xp = 0.5) is linear (Fig. 7), with a slope of about 0.17, 
again not much different from the "real" spherical 
case. 

It can easily be shown that, also for diffusion-con- 
trolled kinetics, substitution of the disk (i.e. planar) 
expression 

%exp = 0.5r~a (41) 

into the spherical Fd. ~(ot) vS. r function (Eq. (9)) yields 
a curve which is almost linear up to about oe= 0.5 with 
a slope of about 0.028, close to the value of 0.037 
obtained for real spherical symmetry (Table 1). 

It is thus concluded that, for the contracting-envelope 
kinetic functions, the variations in the "universal" forms 

100E+O0 . ' " ' " ~ "  ,- .*'*****'""" ............ - 
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Fig. 7. Effects of  shape variations on the constant-velocity kinetics 
(plotted on a "universal" reduced time scale). The  ordinate represents  
Fcv, s (otge~P), the spherical function (Table 1), in which otg ~xp values 
of reacting non-spherical  particles (g-= wire or disc respectively) were 
substituted and compared with the spherical case. 

(and "universal" slopes) of these functions, induced by 
geometrical shape changes, are much less pronounced 
than the variations induced by changes in the controlling 
mechanism (i.e. r - C V  or D). Hence, applying the 
Fr. s(a) vs. r analysis, utilizing the spherical-geometry 
expression, is still valid for non-spherical geometries 
which, even though they result in some deviations from 
linearity at higher a values, still display a linear de- 
pendence (for the correct mechanism) over a relatively 
wide range of oe, with the "universal" linear slope 
indicative of the respective mechanism. In other words, 
variations in particle shape do not alter much of the 
above analysis, which properly points to the controlling 
mechanism. 

The second issue that should be considered now is 
the ability to obtain the respective intrinsic kinetic 
parameters (i.e. U or kD) from the linear regions of 
the Fr, s(a) vs. t curves, for powders with non-spherical 
particles. In this case, expressions of the type given by 
Eq. (30) (for constant-velocity kinetics) or Eq. (31) (for 
diffusion-controlled kinetics) should be used, but with 
some "effective" spherical radius R e replacing the de- 
fined spherical case. The question to be addressed then 
regards the type of "effective" radius which should be 
utilized and to what accuracy does it yield the respective 
intrinsic kinetic parameters. 

For constant-velocity kinetics, comparing the initial 
Fcv, s(oe<<l) time dependence expressed by Eq. (5') 
with the corresponding planar case [14] 

2U 
aCV, p(t)= ~ -  t (42) 

(with H being the thickness of the planar sample) it 
turns out that choosing the smallest dimension of the 
planar sample as the "effective radius" (i.e. Re=H) 
and substituting the correct acv. pcxp kinetics (Eq. (42)) 
into the spherical Fcv, J a < < l )  case (Eq. (5')), the 
resulting error in U is about 30% (since the "real", 
i.e. "experimental", slope is then 2U/3R e whereas the 
effective assumed slope is U/Re). A better choice for 
an "effective" radius would thus be R c= 3 2H, which 
then leads to the exact U value. 

A more generalized analysis can be presented for a 
non-spherical particle with a given A, axial ratio (or 
aspect ratio). Assume a cylinder, with a radius R~ and 
a height/arc reacting according to the constant-velocity 
kinetics. The reacted fraction time dependence is then 
given by (in [14] a similar expression is given but with 
an error in the quadratic term coefficient, which is 
corrected in Eq. (43)) 

acv, + 1 4 1 
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Defining the axial ratio 

2Re 
) t  a = .... ( 4 4 )  

H~ 

Eq. (43) can be rewritten as 

A, + 2 2(a, + 2) 
~cv.~ =: - -  Ut R~ R~ 2 

"~" (Ut) 3 (45) × (Ut) ~ + Ro--- 3 

However, assuming a "spherical-equivalent" particle 
with effective radius R e reacting according to Eq. (4) 
(with R ~ replacing R), equating the two linear-term 
coefficients in these expressions yields the best choice 
for R ~ as 

(R5 c) --- 1.5(tis) (49) 

(with (65) defined by an equation similar to Eq. (29)) 
whereas symmetric particles are characterized by a 
single spherical-equivalent dimension A (of about a 
radius of a sphere enclosed within the corresponding 
shape) with 

(R5 ~) = (As) (50) 

However, for powders with a wide dispersion of 
shapes(e.g, containing both asymmetric and symmetric 
particles), the choice of (R5 ~) is more complicated and, 
even though the corresponding controlling kinetics (i.e. 
constant velocity or diffusion controlled) can be eval- 
uated (by F~. ~(a) vs. r analysis), accurate estimation of 
the intrinsic kinetic parameters is not possible. 

3 
R e - Re (46) 

A,,+2 

(Note that this expression is different from the volume- 
equivalent spherical radius given by (3/2&)raRe.) Some 
specific: cases derived from Eq. (46) are as follows: (i) 
symmetric cylinder, aa = 1, for which R c =Re; (ii) wire- 
like geometry, as << 1, for which Re= 1.5Rw (Rw is the 
wire radius); (iii) plate-like geometry, ha >> 1, for which 
R e~ 1.SHp (np is the height of the plate), as discussed 
above. Hence, for very asymmetric particles, the effective 
spherical radius is related to the smallest dimension 
of the corresponding shape. Similarly, for diffusion- 
controlled kinetics, comparing the initial FD. s (a << 1) 
time dependence presented by Eq. (9') with the planar 
case [14] (neglecting the volume change associated with 
product formation, e---)l), i.e. 

8kD 
aD. p2(t) = ~5- t (47) 

and substituting into Eq. (9') R c = H  lead to an error 
of a factor of 18/8 = 2.25 in the calculated value of kD. 
This error is much larger than the error of about 30% 
obtained for the corresponding constant-velocity ki- 
netics. Hence, the best choice for R ¢ in this case would 
be 

1/2 

[18~ H Re= I-~- ) = l.5H (48) 

which is the same best substitution obtained for constant 
velocity kinetics. To conclude this part it can thus be 
assumed that, for powders characterized by non-spher- 
ical but still shape-defined particles, utilizing Eq. (30) 
or (31), with (Rs ~) replacing (Rs), will yield a relatively 
accurate estimate of the intrinsic kinetic parameters. 
In a gross manner, for very asymmetric particles, de- 
noting the smallest dimension of the corresponding 
shapes by a (e.g. a = H  for disks, and 6=Rw for wires), 
then 

2.2.3. Effects of initiation time distributions 
In Sections 2.2.1 and 2.2.2, it was assumed that the 

commencement of the reaction occurs instantaneously 
on all powder's particles. In fact, different particles 
may start to react at different times, leading to a spread 
of these initiation times. In order to evaluate the effects 
of such time dispersions on the SPA-like procedure, 
a Monte Carlo procedure was utilized to "activate" 
randomly any given particle in the powder (with a given 
size distribution function). A "marker" parameter 
0~<M~<I was defined for each computer run. Then, 
for a given reaction time t, a scan over all particles 
was made. For a given individual particle i, a random 
number 0 <Pi ~< 1 was generated with the condition that, 
if Pi<~M, the specific particle is "activated" (i.e. starts 
to react at the given time t) whereas, if Pi>M, the 
particle does not react at this time. Any particle which 
had started to react at a time t'~<t was assumed to 
follow the kinetics presented by Eq. (21), with t - t '  
replacing t. For a given intrinsic kinetic parameter (i.e. 
either U or kD), summing ai over all reacting particles 
yielded the corresponding a(t) value. Then, the reaction 
time was increased by some increment At, and the 
above procedure repeated. In this way, the a(t) vs. t 
dependence was computed, for any given size distri- 
bution, and kinetics (i.e. constant velocity or diffusion 
controlled). 

It is evident that, as M approaches unity, the dis- 
tribution function of initiation times narrows (with M = 1 
corresponding to the instantaneous commencement 
case). 

Fig. 8(a) presents the initiation time distributions 
N(t) obtained for a given ensemble (of 20 000 particles), 
for different choices of M. These distributions are 
gaussian like with a maximum at t = 0 (i.e. no induction 
period is assumed for the first reacting particles) and 
a width cr,(M), which broadens as M decreases. The 
corresponding a(t) vs. t curves (for the different N(t) 
distributions) were calculated for a given size distri- 
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Fig. 8. (a) Probability distribution of number  of particles which start 
to react at time t, for different choices of the "marker" parameter 
M (see text). The widths ot of these distributions corresponding to 
the different M values are as follows: M=I ,  o-t=0; M=0.1 ,  
o ' ,=1.3×10 -3 s; M=0.05,  o-,=0.13 s. (b) Effects of initiation time 
distributions (as displayed in (a) on the acv vs. t kinetic curves. 
Labelling as in (a). 

bution function (G2 in table 3), assuming constant- 
velocity kinetics and some given U values (which de- 
termine tl/2). Fig. 8(b) summarizes the corresponding 
a vs. t behaviour, displayed for different tr, values. Two 
effects are apparent from these kinetic curves: (i) a 
displacement of tl/2 towards higher values resulted by 
the delay in the commencement of the reaction for 
some of the particles; (ii) inflection points introduced 
into the curves, which now assume an S-like shape. 
This behaviour qualitatively resembles the nucleation- 
and-growth kinetics (i.e. Eq. (13)); however, the in- 
flection points in the latter case are located at about 
t=tl/z (cf. Eq. (20)) whereas, for the present kinetics, 
inflection occurs at t <<t~/2. 

The modification of the kinetic behavior by such 
initiation time distributions may thus obliterate the 
mechanistic-related functional dependences, leading to 
a situation where the SPA procedure cannot be applied 
to the powder. This situation is encountered when the 
tr, values (i.e. time distributions widths) are comparable 
with the intrinsic ta/2 values of the reaction (i.e. the 
ta/2 values obtained for the case when all particles start 
to react simultaneously). 

3. Discussion 

The present analysis demonstrates that under certain 
circumstances the kinetic measurements performed on 
powders can be interpreted by applying the SPA pro- 
cedure. Besides the extrinsic experimental parameters 
(e.g. an effective heat and mass conduction) which 
should be carefully controlled, and which pose a certain 
technological difficulty in such measurements [7,9-13], 
there are some intrinsic kinetic factors which may 
exclude the application of the above SPA. The two 
main factors of this category are (1) dispersed time 
distributions for the commencement of the reaction on 
the different particles composing the powder (as has 
been discussed in Section 2.2.3) and (2) a relatively 
fine size of powder particles, ranging within the mag- 
nitude of X0 (Eq. (2)), i.e. the initial thickness of the 
continuous product film developing on the surface. In 
this conjunction, it should be realized that, since re- 
peated hydriding-dehydriding cycles initially result in 
particulation of the material into finer particles (up to 
a certain extent attained after a given number of cycles), 
it is possible that the overall kinetics displayed for 
consecutive hydriding-dehydriding experiments may 
change. Starting with a powder with relatively coarse 
particles (i.e. such that Xo/(R)<< 1) the dominant ki- 
netics then follow the contracting envelope SPA func- 
tions (i.e. Eqs. (4) and (5) or Eqs. (9) and (12)). 
However, if the size distribution of that powder shifts 
into smaller (R) values by repeated cycling, leading to 
a situation when Xo/(R) = 1, then the former contract- 
ing-envelope kinetics are obliterated. In the extreme 
case (Xo/(R)>1 1) S-shaped kinetics related to nuclea- 
tion-and-growth mechanisms (Eq. (13)) are taking place. 

On the contrary, the effects of size distributions as 
well as shape variations are usually not drastic enough 
to prevent the identification of the proper type of 
kinetics by the SPA procedure. In addition to the 
evaluation of the controlling kinetics, it is important 
to obtain the numerical values of the corresponding 
intrinsic kinetic parameters (e.g. U for constant-velocity 
kinetics or kD for diffusion-controlled kinetics), as well 
as their pressure-temperature dependence [14]. In this 
context it has been shown in the present analysis that 
for nearly symmetrical particle shapes, regardless of 
the size distribution of the powder, a relatively accurate 
estimate of these parameters is possible (Eq. (30) or 
(31)), if the particular size distribution function of the 
reacting sample is known. For asymmetrical particles 
(e.g. platelet-like shapes and wire-like particles) a more 
complex analysis is required (e.g. Eq. (49)), utilizing 
averaged parameters related to the smallest dimension 
of the corresponding particle shape. However, in these 
cases the accuracy in the absolute values of the intrinsic 
kinetic parameters is less than in the case of symmetric 
particles. It should further be noted that unlike the 
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determination of the absolute values of intrinsic kinetic 
parameters (at a given pressure and temperature) the 
accurate evaluation of apparent "activation energies" 
E,  associated with these parameters [14] is possible 
even for unknown size distributions or shape factors 
of the powders. As long as the functional form of the 
SPA kinetics (e.g. Eq. (3)) is established (which does 
not require knowledge of these distributions), a pa- 
rameter k(T)/(R,) m is evaluated, with k(T) being pro- 
portional to the (temperature-dependent) intrinsic ki- 
netic parameter, and (Rn) m a dimension-related factor 
(e.g. (Rs) or (Rs) 2 in Eq. (30) or (31) respectively). 
Hence, even when (Rn)" is not known, still an Arrhenius 
plot of ln[k(T)/(Rn) m] vs. 1/T will yield the apparent 
E,, if the corresponding intrinsic kinetic parameter does 
obey such an Arrhenius dependence. This consideration 
has been pointed out previously by Kapur [25], although 
in a somewhat different way. In fact, the procedure 
outlined there [25] enables the determination of Ea 
even without the evaluation of the specific functional 
form of the kinetic data (i.e. without the choice of a 
particular Fr, g(a ) in Eq. (3)). 

The above considerations about the evaluation of E~ 
should be modified to some extent when analysing 
kinetic experiments performed under conditions which 
are close to equilibrium, i.e. under such working pres- 
sures P and temperatures T, where P is not very much 
different from Pc(T) (the equilibrium plateau pressure 
of the hydride). In these cases the intrinsic kinetic 
parameters (or the related k rate constants) are modified 
by temperature variations in a complex way owing to 
the simultaneous interplay of the formation and de- 
composition processes. The typical Arrhenius depen- 
dence attained under far-equilibrium conditions is then 
replaced by a complex temperature behaviour, displaying 
a maximum in the In k vs. 1/T curves [14]. Hence, the 
evaluation of Ea requires knowledge of the pressure 
dependence of k[P, Pc(T), T]. Otherwise, different E, 
values can be assigned for different possible kiP, Pc(T)] 
relations [7,9], with no real physical significance of these 
"activation" parameters. 

It is worthwhile to demonstrate some qualitative 
trends emerging from the present analysis which may 
account for some controversial kinetic results reported 
in the literature. One example concerns the kinetics 
of formation of the LaNis-H2 system (actually the 
LaNia.gAlo.a alloy) as reported in two publications [7,9]. 
In these studies, two types of kinetics are reported, 
one [9] corresponding ot the contracting-envelope ki- 
netics (Eq. (5)), and the other [7] corresponding to 
bulk nucleation and growth (Eq. (14)) with n =2. In 
both studies the applied experimental conditions (P 
and 7) were in the same range, and care has been 
taken to keep isothermal-isobaric control during the 
kinetic measurements. 

According to the above discussion, two possible factors 
could account for the change in the observed kinetics. 
One factor is the occurrence of a significant spread 
(distribution) in the times of commencement of the 
reaction (on each of the powder's particles), whereas 
the second possible factor is an increase in the Xo/(R) 
ratio. 

As for the former possibility, it has been pointed 
out in Section 2.2.3 that such a time distribution may 
lead on the one hand to a significant increase in ta/a 
(i.e. slower kinetics) and on the other hand to the 
appearance of inflection points in the a vs. t kinetic 
curves, similar to nucleation-and-growth kinetics. It is 
evident that both symptoms are apparent in the data 
presented in [7]. Different reasons may be postulated 
for the existence of such an effect. One possibility is 
the presence of some gas-phase impurities which inhibit 
to some extent the hydriding reactions, leading to the 
dispersed initiation time distribution. The samples size 
utilized in [7] are about three orders of magnitude 
smaller than those used in [9] (only 5 mg in the former 
compared with about 5 g in the latter). It is thus possible 
that chemisorption of such minor impurities on the 
(large) surface area of the larger samples [9] inhibits 
only a small and insignificant fraction of the powder, 
whereas for the smaller samples [7] such inhibition 
effects are pronounced. There is, however, one point 
which may cast doubt on the above reasoning. The 
location of the inflection point in the data presented 
in [7] is at about a--0.5 (i.e. t~tm). As discussed 
before, inflection points induced by dispersed com- 
mencement time distributions are usually located at 
a<<0.5, which is inconsistent with these experimental 
results. 

As for the second possibility mentioned above, i.e. 
an increase in the Xo/(R) ratio, such an increase may 
be the result of two factors; it could be due either to 
a decrease in (R) (i.e. a finer powder with smaller 
particles) or to an increase in Xo (i.e. the completion 
of a continuous product layer covering the surface, 
occurring at a larger avalue, for a given size distribution). 
No experimental details on the size distributions of the 
powders utilized in [7,9] were presented. However, 
since in both studies the samples were activated by 
several hydriding-dehydriding cycles, it is not likely 
that these size distributions could differ by such an 
extent as to account for the observed change in kinetics. 
Moreover, the tm values obtained in [7] are much 
higher then those in [9] (under similar conditions). If 
the reason for the change into nucleation-and-growth 
kinetics was attributed to a finer particle size distribution 
(in [7]), then the opposite trend (i.e. faster kinetics, 
or shorter tl/z values) would be anticipated. Hence, this 
possible explanation can be ruled out. 

The other alternative for an increase in the Xo/(R) 
ratio is, as mentioned above, an increase in Xo, occurring 
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under the experimental conditions applied in [7]. It is 
illustrated in Fig. 1 that the preceding stage to the 
formation of a continuous product layer on the surface 
of a given reacting particle involves a nucleation-and- 
growth process. Hence, for a given nuclei growth rate, 
it is anticipated that a lower nucleation density will 
result in a larger Xo value (since the complete overlap 
between the growing nuclei is then delayed to larger 
Xo). Since the nucleation density is very sensitive to 
the presence of gas-phase impurities [32], the reasoning 
presented above (i.e. smaller samples utilized in [7] 
which are more prone to the effects of impurities) is 
relevant also for the present case. This explanation is 
also consistent with the increase in the tl/z values 
observed in [7]. Hence, the differences between the 
results reported in the two above publications are 
reasonably accounted for by the increase in )to due to 
a lower nucleation density under the conditions applied 
in [7]. 

Another example, illustrating the effects anticipated 
for the case of a time distribution for the commencement 
of the reaction on the different particles, is given by 
the data presented in a recent publication on the 
hydriding kinetics of LaNis_~AIx alloys [33]. According 
to this study, increasing the aluminium content of the 
alloy (i.e. increasing x) results in a shift in tl/2 towards 
higher values, concomitant with an inflection point (in 
the a vs. t curves) occurring at low a values. This is 
similar to the behaviour displayed in Fig. 8(b). Such 
behaviour has not been analysed by Zhang et al. [33] 
and can be accounted for by the present considerations. 

Finally, it should be pointed out that the present 
analysis is relevant not only to the case of powders 
but also to some topochemical forms displayed during 
the hydriding reactions of massive polycrystalline sam- 
pies. In certain cases [34,35], metallographic exami- 
nations of partially hydrided samples have revealed 
that the reaction progresses by fast diffusion of hydrogen 
along grain boundaries, and the formation of a product 
hydride layer coating each of the grains in the sample, 
developing from the outer grain boundary inside the 
grain. Hence, even though a bulk (non-powdered) sam- 
ple is concerned, the overall kinetics resemble the 
contracting-envelope kinetics of a powder, with grain 
size distributions replacing the particles size distribu- 
tions in the powder. A similar situation has been 
observed for the hydriding of bulk LaNi5 [36], where 
the reaction commences along preferred bulk paths 
(probably grain boundaries or microcracks), resulting 
in the particulation of the bulk sample at a very early 
stage (i.e. a very small a) of the reaction. A detailed 
discussion of these measurements will be presented 
elsewhere [36]. It is, however, important to recall that 
in such cases some confusion may arise when attempting 
to analyse the kinetic data, without noting the particular 
topology of product progression. Assume that such a 

polycrystalline bulk sample, with a well-defined initial 
geometrical shape (e.g. a cube with an edge size 
A ×A ×A), yields a certain experimental a vs. t kinetic 
curve, which actually corresponds to the above-men- 
tioned topochemistry (i.e. contracting-envelope con- 
stant-velocity kinetics developing on each of the grains 
in the bulk sample). However, without noticing the 
case, the a vs. t data are fitted to the SPA functions 
(Eq. (4) or (5)) assuming a real single-particle reaction 
(i.e. assuming that the sample reacts by conventional 
contracting-envelope constant-velocity kinetics, with the 
product developing on the surface of the cube and 
progressing inwards). Evidently, in both cases the SPA 
functions (4) or (5) will yield a very good fit to the a 
vs. t curves. In the former (real) case, however, (Rs) 
(averaged over the grain size distribution) should be 
substituted, according to Eq. (30), leading to the correct 
value of U, whereas for the latter (mistaken) case the 
cube dimension A is utilized, leading to an erroneous 
estimation of U. This type of incorrect analysis can be 
prevented by either performing metallographic obser- 
vations on partially hydrided samples (noting then the 
real morphological form of product development), or 
alternatively by performing the SPA procedure on dif- 
ferent sizes of samples (e.g. a set of cubes with increasing 
dimensions). For a conventional SPA case (contracting 
envelope following the geometrical shape of the sample), 
the slopes of the Fcv(a) vs. t curves (Eq. (5)) should 
decrease with increasingA value, whereas for the grain- 
boundary constant-velocity case the same slopes (U/ 
(Rs)) should be displayed regardless of the initial 
dimensions (or shape) of the reacting sample. Hence, 
such a size (or shape) analysis simply identifies the 
correct morphological characteristics of product de- 
velopment. 

4. Conclusions 

The validity in utilizing spherical SPA models for 
the interpretation of kinetic data obtained for gas-solid 
reactions (e.g. hydriding reactions) performed on pow- 
ders was evaluated. The SPA models discussed included 
two types of contracting-envelope kinetics (cf. Fig. 1): 
one with a constant-velocity interface movement and 
the other with a decelerating diffusion-controlled bound- 
ary progression. The corresponding SPA kinetic func- 
tions for a spherical geometry are given by Eqs. (4) 
and (5) or by Eqs. (9) and (12) respectively. These 
types of functions are conventionally applied in the 
literature to interpret the kinetics of powders. The 
justification for such a procedure is not a priori straight- 
forward because of three factors inherent in powder 
kinetics which may modify the spherical SPA behaviour. 
These factors are (i) particle size distributions, (ii) 
particle shape variations and (iii) time distributions for 



M.H. Mintz, Y. Zebi / Journal of Alloys and Compounds 216 (1994) 159-175 173 

the commencement of the reaction on each of the 
particles composing the powder. 

In the present work, the effects of these powder- 
inherent factors are quantitatively analysed and their 
interference in the SPA procedure is estimated. The 
outcome of this analysis refers to two main questions. 

(1) Can the SPA analysis yield the correct type of 
kinetics controlling the gas-solid reaction of the powder, 
i.e. can it identify correctly either the constant-velocity 
or the diffusion-controlled kinetics? 

(2) Beyond the identification of the type of kinetics, 
is it possible to obtain by such an analysis a quantitative 
estimate of the associated intrinsic kinetic parameter 
[14], i.e. to evaluate U or ks in Eqs. (4) and (5) or 
Eqs. (9) and (12) respectively? 

The conclusions obtained, regarding the questions 
addressed above, are as follows. 

(1) As long as all the particles composing the powder 
start to react simultaneously (or at least when the time 
spread for the commencement of the reaction on each 
of the particles is much smaller than the reaction half- 
time tl/z), and as long as a continuous product layer 
is formed on each particle at a very early stage (i.e. 
Xo in Eq. (2), illustrated in Fig. 1, is much smaller 
than the dimensions of the reacting particles), the 
occurrence of either dispersed size distributions of 
particles or particle shape variations (from spherical 
symmetry) does not lead to significant deviations from 
the spherical SPA functions, over a relatively wide range 
of the reaction course (i.e. up to a-~ 0.5-0.6). This is 
displayed in Figs. 3 and 4 for the constant-velocity 
kinetics, and in Figs. 5 and 6 for the diffusion-controlled 
kinetics. Hence, the correct identification of the con- 
trolling type of kinetics (i.e. either constant velocity or 
diffusion controlled) is possible in these cases, even 
without knowledge of the specific size distribution func- 
tion of the powder, or its particle shapes. 

(2) The controlling type of kinetics mentioned above 
can be identified by checking the Fr, g(a) time behaviour 
(Eq. (3)) with g corresponding to the spherical geometry 
(or any other chosen geometry which in fact is not 
significant for that purpose) and r corresponding either 
to constant-velocity kinetics (Eq. (5)) or diffusion-con- 
trolled kinetics (Eq. (9)). The substitution of the ex- 
perimental a(t) data into the Fr, g(te) VS. t curve should 
yield an initial linear dependence for the correct type 
of controlling kinetics (linearly up to about a = 0.5-0.6). 

Alternatively, presenting the Fr. g(a) vs. reduced time 
scale (r=t/tl/2) should yield for the proper kinetics a 
linear dependence (up to ~'= 1), with a "universal slope" 
typical of the type of kinetics (see Table 1). Hence, 
the difference between these two alternatives of data 
analysis is that, while the former type of presentation 
(i.e. Fr, g(o 0 vs. t curves) yields (for the given proper 
kinetics) linear slopes which depend on the experimental 
pressure-temperature conditions (because of the de- 

pendence of the corresponding intrinsic kinetic param- 
eters [14]), the latter (i.e. Fr.g(a) vs. ~') presentation 
yields a fixed slope (for all the applied pres- 
sure-temperature conditions) typical of the type of 
kinetics only. 

(3) Besides identification of the controlling kinetics, 
since the initial linear slopes (obtained for the proper 
kinetics) of the Fr, g(a) vs. t curves are proportional to 
the corresponding intrinsic kinetic parameters, it is 
possible to evaluate by this analysis the functional 
temperature and pressure dependences of these kinetic 
parameters (although not their absolute values). For 
example, Arrhenius plots of these linear slopes can 
yield the apparent activation energies. (For hydriding 
reactions, especially for non-stable intermetallic hy- 
drides, special considerations of the Arrhenius-type 
plots should be made when approaching near-equilib- 
rium conditions, as mentioned in the discussion part 
of this article). Hence, qualitative pressure-temperature 
trends and apparent activation energies can also be 
evaluated in these cases without knowledge of either 
particle size distributions or particle shapes. 

(4) In order to evaluate the absolute values of the 
associated intrinsic kinetic parameters (i.e. U for con- 
stant-velocity kinetics and kd for diffusion-controlled 
kinetics), it is necessary to determine the shapes and 
the size distributions of the powders. The accuracies 
of such absolute values estimations depend on the shape 
variations of the particles in the powders. 

(i) For powders composed of nearly axially symmetric 
particles (e.g. nearly spherical, nearly cubic and sym- 
metric polyhedra), accuracies better than +_30% can 
be obtained, utilizing Eq. (30) or Eq. (31) for constant- 
velocity or diffusion-controlled kinetics respectively. 

(ii) For powders composed of axially asymmetric 
particles (e.g. platelets and wire-like particles) but 
uniformly shaped, averaging is made over the smallest 
dimension of the corresponding shape (e.g. the radius 
of the wire), and Eq. (49) replaces the axially symmetric 
average moment (i.e. (Rs)) in Eqs. (30) and (31). 

(iii) For powders composed of particles with variable 
shapes (i.e. including both axially symmetric and axially 
asymmetric particles), the estimation of the absolute 
values of the intrinsic kinetic parameters is not accurate, 
and only identification of the type of controlling kinetics 
and qualitative pressure-temperature trends (as sum- 
marized in conclusions (1)-(3)) are applicable. 

(5) For cases when the time spread for the initiation 
of the reaction on each of the particles composing the 
powder is comparable with the reaction half-time tl/2, 

the shapes of the a vs. t kinetic curves are modified, 
and inflection points are displayed at low a values (i.e. 
at a<< 0.5). These modifications obliterate the kinetics- 
type "fingerprints" of these curves, and no meaningful 
analysis of the data is then possible. 
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A similar situation may be encountered when the D(T) 
formation of a continuous product layer (cf. Fig. 1) is 
delayed, i.e. when Xo in Eq. (2) becomes comparable Ea 
with the size of the reacting particles (for more details Fr, g(a) 
see the discussion section of this article). 

(6) The difference between the inflection points 
induced in the a vs. t kinetic curves by the occurrence 
of the above-mentioned initiation time dispersions, and 
inflection points induced by the occurrence of bulk 
nucleation-and-growth kinetics (Eqs. (13) and (14)) 
should be noted. In the latter case the inflection points 
are located at about the half-reaction stage (a=0.5; G1, G2 
t = tl/z), and a kinetic analysis of the data is possible. 

Finally, it should be emphasized that the term "par- H 
ticle" is not well defined in powder-related fields and Hc 
is usually associated with the method of measurement k 
of the particular size distribution (e.g. a "particle" can 
be associated with a crystallite, an aggregate of crys- kD 
tallites or an agglomerate). In our present context the kNG 
term "particle" refers to the smallest solid entity reacting 
by the contracting-envelope morphology (Fig. 1) and Kg 
is not necessarily identical with the powders aggregates 
as determined by microscopic (e.g. scanning electron L1, L2 
microscopy) or sedimentation measurements. An ex- 
ample of such an extreme difference has been dem- M 
onstrated in the discussion section, for the reaction of 
polycrystalline bulk samples occurring by fast grain 
boundary diffusion. In this case the term "particles" n 
is in fact related to grains within the bulk sample. This p 
issue, however, is important only for the determination Pe(T) 
of absolute values of the intrinsic kinetic parameters 
(which requires the calculation of averaged size pa- R 
rameters) but is irrelevant to the identification of the Rc 
type of kinetics and the determination of pres- R ~ 
sure-temperature trends (which, as stated above, do 
not require knowledge of particle shapes or size dis- 

Rmin 
tributions). 
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Appendix A: Nomenclature 

a i constants appearing in the equation which 
relates the reacted fraction to the reaction 
displacement (Eq. (1)); they depend on 
the shape and size of reacting samples 

A dimension of a symmetric particle (e.g. a 
sphere or cube) 

(A,) nth average moment of A 
D ( R )  size distribution function of the particles 

composing the powder 

(R,) 

t 

tl/2 

to 

T 
U 

v,(t) 

Vr(t) 

Vo 
X( t )  

(temperature-dependent) diffusivity of the 
reacting gas atoms in the product layer 
apparent activation energy 
function of the reacted fraction a, which 
for a given type of kinetics r (r = CV or 
D or NG), and geometrical shape g, yields 
a linear time dependence (Eq. (3)); in some 
cases, when one of these subscripts (i.e. 
either r or g) are specified in the text, this 
subscript in omitted; usually, for spherical 
symmetry the subscript g--s is omitted. 
gaussian size distribution functions (Table 
2) 
thickness of a plate-shaped sample 
height of a cylindrically shaped sample 
kinetic constant related to the intrinsic 
kinetic parameters 
diffusion-related kinetic constant (Eq. (7)) 
nucleation-and-growth-related kinetic con- 
stant 
constant related to the geometrical shape 
of growing nuclei 
long-normal size distribution functions (Ta- 
ble 2) 
"marker" parameter used for the Monte 
Carlo simulation of initiation time distri- 
bution 
integer number 
working pressure 
equilibrium pressure of the product phase 
(temperature dependent) 
radius of a spherical particle 
radius of a cylindrically shaped sample 
"spherical-equivalent" radius of a non- 
spherical particle 
radius of the smallest particle composing 
the powder 
nth average moment of R (Eq. (29)) (in 
some cases, (Ra) is denoted as (R)) 
reaction time 
reaction half-time (for a=0.5) 
time required to attain a continuous product 
layer, coating the reacting particle (the 
corresponding initial thickness of product 
layer Xo) 
absolute temperature 
product interface velocity in the reacting 
matrix (U is either constant or time de- 
pendent U(t))  
reacted volume (at t) of the ith particle in 
the powder 
total reacted volume (at time t) 
initial volume of the sample 
reaction displacement, at time t (given by 
Eq. (2)) 
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Xo initial layer thickness when a continuous 
product layer first forms on the reacting 
sample (at t=t0).  

y(T) composition limit of the hydride phase (at 
temperature T) 

Zo(P, T) equilibrium excess hydrogen dissolved in 
the hydride under the experimental P - T  
conditions 

Greek letters 

a reacted fraction 
% g(t) functional time dependence of the reacted 

fraction, for a given type of  kinetics r (r = CV 
or D or NG; see respective notations) and 
geometrical shape g, of  a reacting particle 
(g----s, w etc.); in some cases, one of  these 
subscripts (i.e. either r or g) is omitted 
(when this subscript is specified in the text) 
smallest dimension of a given shape (e.g. 
the thickness of  a disc, or the radius of  a 
wire) 

( ~ )  nth average moment of  S 
e volume ratio of  product to reactant 
/~a axial ratio of a given shape (Aa = 1 for a 

sphere, A << 1 for a wire and A. >> 1 for a 
plate) 

p weight density of the material 
~r standard deviation of the particle size dis- 

tribution function 
~r, standard deviation of  the initiation time 

distribution 
": t/tl/2, reduced time 
~'m value of  z where an inflection point occurs 

in the aNt ( r )  curves (Eq. (20)) 
'7" r maximum range of • for a given type of 

kinetics ( r = C V ,  D or NG),  i.e. ar = 1 at 
"r=Tr  

~'r* value of ~- when a =  0.99 for a given type 
of  kinetics r 

Subscripts 

c cylinder 
CV constant-velocity kinetics 
d disk 
D diffusion-controlled kinetics 
g geometrical shape 
NG nucleation-and-growth kinetics 
p plane 
s sphere 
w wire 
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